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Geochemical analyses of rock samples from the Black Butte District
and Holderman Mountain area, Lane County, Oregon

By

Jocelyn A. Peterson

INTRODUCTION

Rocks of the Western Cascade Range of Oregon host several types of mineral deposits
including polymetallic vein, hot-spring mercury, epithermal precious-metal vein, and breccia-pipe
copper deposits. Although detailed descriptive information about the mining districts and their
deposits has long been published, understanding of the genesis of these deposits and their relation
to Cascades arc magmatism is only beginning. A part of this understanding includes knowledge of
the geochemical distribution of elements, particularly in altered rocks.

As part of a broader project on metallogenesis within the Cascades magmatic arc, I am
investigating hydrothermal mineralization in the area of Black Butte and Holderman Mountain.
The Black Butte district lies about 25 km south of Cottage Grove, Oreg., and Holderman Mountain
is about 35 km southeast of Cottage Grove, directly west of the Bohemia Mining District (fig. 1).
Polymetallic veins in the Bohemia district have been studied in much detail (see, for example,
Callaghan and Buddington, 1938). Although less intensively studied, epithermal veins of the
Black Butte district have also been described (Brooks, 1963, for example). Recent unpublished
geological and geochemical reconnaissance studies by Weyerhaeuser Company between the Black
Butte district and the western edge of the Bohemia District have revealed several hydrothermally
altered areas, including the Holderman Mountain area where there are associated precious-metal
concentrations. This paper presents chemical analyses and alteration mineralogy for 46 samples
collected from the Black Butte District and Holderman Mountain area.

ACKNOWLDEGMENTS

Weyerhaeuser and Cone Lumber Companies kindly allowed me to collect rock samples on
their respective timber lands. Without that access, this project would not have been possible.
Kenneth R. Bishop of the U.S. Geological Survey in Menlo Park, Calif., performed x-ray
diffraction analyses on hydrothermally altered samples to help me characterize their alteration
mineralogy.

GEOLOGIC OVERVIEW

The Cascade Range in Oregon is composed primarily of Eocene to Holocene calc-alkaline
volcanic and volcaniclastic rocks that formed in an arc setting related to subduction along the west
margin of North America (Sherrod and Smith, 1989). The range in Oregon can be divided into
two physiographic parts, the Western Cascades containing primarily deeply eroded older volcanoes
and the High Cascades along the crest of the range containing young shield and stratovolcanoes for
which original physiographic form is largely preserved. Known mineral deposits within the
Cascade Range of Oregon are restricted to rocks of the Western Cascades, where base- and
precious-metal deposits tend to cluster into well-defined districts from the Bohemia District
northward and are present as isolated occurrences south of Bohemia (see Callaghan and
Buddington, 1938). Rocks of the Western Cascades are characterized by thick but deeply eroded
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sequences of subaerial volcaniclastic rocks and flows ranging in age from Eocene to Miocene and
having generally andesitic compositions, although rocks of basaltic through dacitic compositions
are common and rhyolites are present locally (Sherrod and Smith, 1989). Interbedded sedimentary
rocks unrelated to volcanism constitute a minor component of the Western Cascades and small
dioritic intrusions are widespread and commonly cluster in the larger mining districts. Because
rocks of the Western Cascades formed from the eruption of numerous volcanic centers, there are
literally hundreds of small overlapping and intertonguing units and very few distinctive laterally
extensive marker beds (Sherrod and Smith; 1989), which makes unravelling the geology of the
area very difficult; poor exposure and deep weathering in many parts of the region further obscure
geologic relations. Many of the rocks have undergone regional metamorphism to zeolite-facies
assemblages. More locally, contact metamorphism has altered rocks to a greenschist-facies
assemblage that resembles the propylitic alteration commonly developed around mineralized areas;
both are present in the study area.

Most base- and precious-metal occurrences in rocks of the Western Cascades are composed
of pyrite or its oxidation products plus other sulfide minerals within quartz veins or shear zones,
and typically contain gold with or without silver, lead, zinc, copper, and (or) antimony.
Characteristics of many of these veins suggest that they are best classified as polymetallic vein
deposits but veins in several districts may better be classified as epithermal based on the host rock,
commodities present, and mineralogy (models: Mosier and others, 1986a, b; deposit descriptions:
Mineral Resource Data System, 1990). Most veins in all the districts trend northwest to west and
dip steeply (Callaghan and Buddington, 1938). The clustering of these deposits into discrete
districts and the characteristics of many of the districts have led some researchers to propose that
the major vein districts may be underlain by porphyry copper-type deposits (Power, 1984).
Indeed, there is indication that a porphyry copper deposit underlies the North Santiam district
(Diggles, 1991). High-grade breccia-pipe copper deposits like that recently discovered at the
Bornite property in the North Santiam District (Hladky, 1993) are associated with several porphyry
copper districts in the Cascade Range in both Oregon and Washington. Less common in rocks of
the Western Cascades are mercury deposits. The main mercury districts are south of Cottage
Grove to the California border and they generally lie west of the polymetallic/epithermal vein
deposits, which may suggest a regional zonation. Characteristics of these mercury deposits
indicate that they probably formed in a hot-spring setting (model: Rytuba, 1986; deposit
descriptions: Mineral Resource Data System, 1990). Propylitic, argillic, and more localized silicic
alteration accompany the mineral deposits within both the Holderman Mountain area and Black
Butte mercury district and are present in other mineralized areas of the Cascades (R.P. Ashley and
J.A. Peterson, field examinations, 1991).

Black Butte District

The Black Butte mercury district lies about 25 km south of Cottage Grove and about 32 km
west of the Bohemia mining district on the north slope of the Calapooya Divide within the Harness
Mountain 7.5-minute quadrangle (fig. 1). Two mines and several prospects are found in the
district, most important being the Black Butte Mine (fig. 2) from which about 18,000 flasks of
mercury was produced (Brooks, 1963). The Hobart Butte Mine has been exploited for high-
alumina clay rather than for mercury, which is present as small quantities of cinnabar along with
realgar and orpiment. Pits and trenches collectively known as the Woodward prospects can be
found on Cinnabar Mountain and Little Baldy, and the Sullivan prospect is north of Dennis Creek.
The host rocks of these mercury deposits are primarily andesitic pyroclastic rocks and interbedded
flows of the upper part of the late Eocene to early Oligocene Fisher Formation (Derkey, 1973).
Hobart Butte is underlain by pyroclastic rocks alone, whereas both flow and pyroclastic rocks are
found on Black Butte and surrounding buttes. Tertiary dioritic intrusive rocks are present in the
region but are not close to the deposits. Argillic alteration affected a broad area around the mercury
deposits. Many of the argillically altered areas also contain dark brown replacement veinlets,
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Figure 2. Map showing sample location for samples collected within the Black Butte
District.



mostly less than 1 cm wide, composed of kaolinite, quartz, and iron oxide minerals. Locally,
particularly south of the Black Butte Mine, silicified areas containing disseminated pyrite were
found during this study. Within the mine area itself, areas altered to silica and calcite form resistant
knobs referred to informally as silica ribs. In many cases alteration is so intense that it obscures
the parent lithology of the altered rock. A normal fault striking approximately N. 70° W. and
dipping about 58° NE. runs along the top of Black Butte, and numerous smaller subparallel faults
extend away from the main fault (Brooks, 1963), but rocks of the region are not severely deformed
and the complex interrelations of eruptive units often hampers the recognition of faults.

Holderman Mountain Area

The Holderman Mountain area lies directly west of the Bohemia District (fig. 1), largest
and most productive of the districts in the Western Cascades of Oregon after the discovery of gold
there in 1858. Both the Holderman Mountain area and the Bohemia District are underlain by rocks
of the Little Butte Volcanic Series of Peck and others (1964) of Oligocene to Miocene age. These
rocks are characterized by volcaniclastic and flow rocks primarily of andesitic compositions
although basalts to rhyolites are also present. Holderman Mountain is underlain by several
volcaniclastic rock units and by basaltic to andesitic flows, most of which have been altered to
some degree. This sequence has been intruded by a basaltic plug, a rhyolitic dome and breccia,
and a small dioritic stock, all within 1 km of the mineralized area. The top of Holderman Mountain
was discovered to be mineralized several years ago by geologists working for Weyerhaeuser Co.,
and drilling and large-scale geologic mapping began there after the area was clear-cut. The surface
manifestation of the mineralization includes altered pyroclastic rocks that are primarily argillized
(kaolinite+quartztillite) and locally silicified (quartz+K-feldspartpyrite). Pyrite is present locally
in a silicified and finely laminated, probably lake-bed, volcaniclastic deposit. In contrast, deposits
in the Bohemia district are found within sulfide-bearing quartz veins. Tourmaline has been found
within altered rocks in one locality about 1.6 km south of the mineralized area; it is too poorly
exposed to adequately describe. Other silicified localities bearing disseminated pyrite have been
found south of Holderman Mountain and intense propylitization characterizes some of the rocks
within about 3.2 km of the mineralized area. As in the Black Butte district, many of the argillized
areas contain dark-brown replacement veinlets composed of kaolinite, quartz, and iron oxides.

SAMPLE COLLECTION AND ANALYTICAL PROCEDURE

Most samples were collected from road cuts, quarries, or entrances to mines because
natural outcrops are generally scarce and (or) deeply weathered. Figures 2 and 3 show the location
of sample sites in the Black Butte district and Holderman Mountain area, respectively. All
analyzed samples are of altered material, and an emphasis was placed on dark-brown replacement
vein material. The appendix provides brief sample descriptions based on field observations and x-
ray diffraction analyses. Whole-rock x-ray diffraction of samples containing replacement vein
material indicates that they are composed primarily of quartz, kaolinite, and iron oxides. The
argillically altered material in which the veins are generally found contains mostly kaolinite but
some samples also contain minor amounts of illite, dolomite, sulfide minerals, or tourmaline.
Although the replacement veins are present primarily in argillically altered rocks, some were also
found in silicified rocks. Unaltered rock samples that were collected to aid in lithologic
identification were not analyzed for trace elements.

All samples were crushed to less than 0.25 in. in a jaw crusher, split if necessary, and
pulverized to 100 percent minus-80 mesh and 80 percent minus-100 mesh prior to analysis
(Taylor, 1990). Each sample was analyzed for 40 elements by inductively coupled plasma-atomic
emission spectrometry (ICP-AES) using a multiple-acid leach (Briggs, 1990); for selenium and
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arsenic by hydride generation atomic absorption spectrophotometry (Welsch and others, 1990;
Crock and Lichte, 1982); for gold, tellurium, and thallium by flame atomic absorption
spectrophotometry (O'Leary and Meier, 1990; O'Leary and Chao, 1990); and for mercury by
continuous flow-cold vapor-atomic absorption spectrophotometry (O'Leary and others, 1990).
Table 1 lists the lower limits of analytical determination for the elements analyzed. Sample
analyses were performed by D.L. Fey, E.P. Welsch, D.J. Abrams, L.A. Bradley, and A.H. Love
of the U.S. Geological Survey in Lakewood, Colo.

DATA

Table 2 lists the trace-element analyses of the 25 rock samples from the Black Butte District
and the 21 rock samples from the Holderman Mountain area. Analyses for most of the elements
are reported in parts per million, but Al, Ca, Fe, K, Mg, Na, P, and Ti are reported in percent.
Au, Bi, Cd, Ho, Sn, Ta, and U, analyzed by the ICP-AES method, were not detected in any
samples above their respective lower limits of analytical determination and are therefore not listed
in table 2. Table 2 also lists the laboratory sample number, latitude and longitude, and the
approximate percentage of the sample composed of dark-brown replacement vein material.

GENERAL OBSERVATIONS

Although the intent of this paper is not to interpret the data presented, some general
observations can be made.

(1) In many cases the alteration products obscure the identity of the parent rock, but remnant
textures and adjacent, less altered rocks suggest that more of the altered rocks were
volcaniclastic rather than flows, probably due to a greater initial porosity of the volcaniclastic
rocks.

(2) Dark-brown replacement veins are characteristically found in argillically altered rocks and
may represent a more advanced alteration stage transitional to silicic alteration. Some areas
around Black Butte clearly show unaltered rock grading into argillically altered rocks, which in
turn grade into replacement veins, but some replacement veins are found within silicically
altered rocks.

(3) Replacement veins, although present in both the Black Butte District and Holderman
Mountain area, seem to be more prevalent in and around the mercury deposits.

(4) Without the benefit of rigorous statistical analysis, it appears that concentrations of As, Cr,
Cu, Sr, V, Tl, and Hg are higher in the Black Butte District, whereas Ba and Au have higher
concentrations around Holderman Mountain. The differences in Cr and V are attributed to
higher Cr and V in the host rocks of the Black Butte area because these elements typically are
not concentrated in epithermal processes.

(5) Similarly, without rigorous statistical analyses, in the Black Butte District, with the exception
of the two samples collected in the pit at Hobart Butte, the samples containing a large
proportion of replacement vein material (=250%) tend to have higher concentrations of As, Cu,
Zn, and TI than samples with a small proportion of vein material (<50%). Pb appears to be
about the same in both kinds of samples and Ba is more abundant in samples with less vein
material. It is more difficult to draw conclusions about the Holderman Mountain area because
only three samples contain a large proportion of vein material. Based on this small sample
size, samples with much vein material have higher concentrations of Zn and Hg, whereas
samples containing less vein material have higher values for As, Ba, Pb, and T1. Cu appears to
be about the same in both types of samples.



Table 1. List of elements analyzed, analytical method used, and lower limits of
alaytical determination.

[*, element not detected above lower determination limit; ICP-AES, inductively
coupled plasma-atomic emission spectrometry; HG-AA, hydride generation-
atomic absorption spectrophotometry; FAA, flame atomic absorption
spectrophotometry; CV-AA, cold vapor-atomic absorption spectrophotometry]

Element Analytical Lower limit of Element Analytical Lower limit of
method determination method determination
Al ICP-AES 0.005 % La ICP-AES 2 ppm
Ca ICP-AES 0.005 % Li ICP-AES 2 ppm
Fe ICP-AES 0.02 % Mo ICP-AES 2 ppm
K ICP-AES 0.01 % Nb ICP-AES 4 ppm
Mg ICP-AES 0.005 % Nd ICP-AES 4 ppm
Na ICP-AES 0.006 % Ni ICP-AES 3 ppm
P ICP-AES 0.005 % Pb ICP-AES 4 ppm
Ti ICP-AES 0.005 % Sc ICP-AES 2 ppm
Mn ICP-AES 4 ppm Sn* ICP-AES S ppm
Ag ICP-AES 2 ppm Sr ICP-AES 2ppm
As ICP-AES 10 ppm Ta* ICP-AES 40 ppm
Au* ICP-AES 8 ppm Th ICP-AES 6 ppm
Ba ICP-AES 1 ppm U* ICP-AES 100 ppm
Be ICP-AES 1 ppm \% ICP-AES 1 ppm
Bi* ICP-AES 10 ppm Y ICP-AES 2 ppm
Cd* ICP-AES 2 ppm Yb ICP-AES | ppm
Ce ICP-AES 5 ppm Zn ICP-AES 2 ppm
Co ICP-AES 2 ppm As HG-AA 0.2 ppm
Cr ICP-AES 1 ppm Se HG-AA 0.2 ppm
Cu ICP-AES 2 ppm Au FAA 0.05 ppm
Eu ICP-AES 2 ppm Te FAA 0.1 ppm
Ga ICP-AES 4 ppm Tl FAA 0.05 ppm
Ho* ICP-AES 4 ppm Hg CV-AA 0.02 ppm
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Appendix. Brief description of analyzed rocks

Sample Tentatively identified rock Alteration Minerals identified by x-ray diffraction
number type
Black Butte district
92JP1 Tuffaceous rocks Argillic, repl. veins Quartz, kaolinite
92JP3 Lithic (pumiceous?) tuff Argillic, repl. veins? Quartz, kaolinite
92JPS Lapilgdmff with carbonized Argillic lapilli, realgar Not x-rayed
WO
92JP6  Lapilli tuff Argillic, realgar, orpiment Quartz, kaolinite, realgar
92JP1S  Dacite Chloritized, epidotized? pyrite  Quartz, calcite, plagioclase (phenocrysts),
kaolinite, K-feldspar?, pyrite
92JP20  Volcaniclastic rock Argillic, repl. veins Quartz, kaolinite, hematite, goethite -
92JP21  Flow (based on surrounding  Argillic, repl. veins Quartz, kaolinite, goethite, minor hematite
rocks)
92JP22  Flow Argillic, repl. veins Quartz, kaolinite
92JP27  Partially welded? tuff Weak argillic Quartz, kaolinite, minor hematite
92JP28 Flow Argillic, repl. veins Quartz, kaolinite, goethite, hematite
92JP29  Volcaniclastic rock Argillic, repl. veins Quartz, kaolinite, goethite, hematite
92JP30  Dacite Argillized feldspar, silicic Quartz, kaolinite, dolomite, pyrite, siderite?
groundmass, pyrite
82JP31  Flow (based on field notes) Argillic, repl. veins Quartz, kaolinite, goethite
92JP32  Volcaniclastic rock Argillic, repl. veins Quartz, kaolinite, goethite, hematite
92JP33  Volcanic breccia Weak argill'ic, very minor Quartz, kaolinite
quartz veins
92JP35  Volcaniclastic rock Argillic, white veins Quartz, kaolinite, goethite, hematite
92JP36 Flow Argillic, repl. veins Quartz, kaolinite, goethite, hematite
92JP37  Volcaniclastic rock Argillic, repl. veins Quartz, kaolinite, hematite, goethite?
92JP40  Volcaniclastic rock Argillic, repl. veins Quartz, kaolinite, goethite, hematite
92JP41  Flow Argillic, silicic, repl. veins Quartz, kaolinite
92JP42  Volcaniclastic rock Argillic, silicic, repl. veins Quartz, kaolinite
92JP43  Volcaniclastic rock Argillic, silicic, pyrite Quartz, dolomite, kaolinite, pyrite
92JP44  Volcaniclastic rock Argillic, repl. veins Quartz, kaolinite, goethite, hematite
92JP46  Volcaniclastic rock Silicic, pyrite Quartz, dolomite, plagioclase, kaolinite,
pyrite, siderite?
92JP47  Volcaniclastic rock Argillic, repl. veins Quartz, kaolinite, goethite, hematite
Holderman Mountain area
92JP49  Lapilli? mff Argillic Quartz, K-feldspar, minor kaolinite?, minor
muscovite/illite?
92JP50  Thin-bedded water-laid tuff Silicic, pyrite Quartz, K-feldspar, pyrite
92JP53  Totally altered, original rock  Argillic, silicic, repl. veins, Quartz, kaolinite, K-feldspar
obscure thin quartz veins
92JP55  Volcaniclastic rock Argillic, silicic, repl. veins Quartz, kaolinite, goethite, hematite
92JP56  Volcaniclastic rock Argillic, silicic, repl. veins, Quartz, kaolinite, pyrite
pyrite
92JP57  Lithic-lapilli tuff Argillic, very narrow repl. Quartz, illite/muscovite, goethite
veins
92JP58  Lapilli uff Argillic lapilli Quartz, kaolinite
92JP59  Undetermined Repl. veins Quartz, kaolinite
92JP61  Lapilli wff Argillic, repl. veins Quartz, kaolinite, muscovite/illite
92JP62  Volcaniclastic rock Argillic, silicic, repl. veins, Quartz, kaolinite, plagioclase, muscovite,
tourmaline? tourmaline?
92JP63 Flow Silicic, repl. veins Quartz, kaolinite, hematite/pyrite
92JP66  Flow Silicic, pyrite, calcite Quartz, plagioclase, siderite?, pyrite?, illite
92JP67  Lapilli? tff Argillic lapilli, repl. veins Quartz, kaolinite, hematite
92JP68  Undetermined Silicic, repl. veins. pyrite Quartz, kaolinite, pyrite?/hematite?,
muscovite?
92JP69  Lithic tuff Propylitic, pyrite Quartz, plagioclase, calcite, kaolinite,
muscovite, siderite
92JP70  Volcaniclastic rock Silicic, pyrite Quartz, clacite, plagioclase, kaolinite,
muscovite/illite, pyrite?, minor chlorite?
(probably), siderite??
92JP73  Volcaniclastic rock Argillic, repl. veins Quartz, kaolinite
92JP74A Volcaniclastic rock Silicic, amethyst. pyrite Quartz, kaolinite, muscovite
92JP75  Volcaniclastic rock Argillic, repl. veins Quartz, muscovite/illite, kaolinite, hematite?
92JP80  Volcaniclastic rock Silicic, argillic, repl. veins Quartz, plagioclase, pyrite, muscovite/illite,
prehnite? (not likely)
92JP81  Volcaniclastic rock Silicic, argillic, repl. veins

Quartz, kaolinite, hematite?, clay?, illite?
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